

# Module 1 wrap up discussion

March 3, 2020

### TDP-43 probe discovery





*in silico* cloning; overexpress TDP-43 lab day 1

purify and analyze TDP-43 concentration lab days 2 and 3



ligand discovery screen lab day 5



scan images and analyze data compare lab days 5 and 6

compare hit lists for teams lab day 7

### 20.109: 'By-eye chem-informatics'



### Embedded differences – the domain of computation







cheminformatics helps probe and drug finders make sense of the tidal wave of information coming from their screens

### Principal moment of inertia (PMI) plots



### 20.109: 'By-eye chem-informatics'











### 20.109: 'By-eye chem-informatics'



## Report for Module 1

scientific abstract

#### nature chemical biology

### A small molecule that binds Hedgehog and blocks its signaling in human cells

Benjamin Z Stanton<sup>1,2,7</sup>, Lee F Peng<sup>1–3,7</sup>, Nicole Maloof<sup>1</sup>, Kazuo Nakai<sup>2</sup>, Xiang Wang<sup>1</sup>, Jay L Duffner<sup>1</sup>, Kennedy M Taveras<sup>1</sup>, Joel M Hyman<sup>4</sup>, Sam W Lee<sup>5</sup>, Angela N Koehler<sup>1</sup>, James K Chen<sup>4</sup>, Julia L Fox<sup>6</sup>, Anna Mandinova<sup>5</sup> & Stuart L Schreiber<sup>1,2</sup>

Small-molecule inhibition of extracellular proteins that activate membrane receptors has proven to be extremely challenging. Diversity-oriented synthesis and small-molecule microarrays enabled the discovery of robotnikinin, a small molecule that binds the extracellular Sonic hedgehog (Shh) protein and blocks Shh signaling in cell lines, human primary keratinocytes and a synthetic model of human skin. Shh pathway activity is rescued by small-molecule agonists of Smoothened, which functions immediately downstream of the Shh receptor Patched.

### Report for Module 1

project summary

thorough summary of your data and figures with supporting text -

include context so that a scientifically literate reader can understand the work and its broader implications

details related to the format and content are on the 20.109 wiki (example posted)

## Report for Module 1

format and content

Layout: Portrait, not landscape.

Font: Arial 14pt for text; Arial 12pt for figure captions.

Text should be written as **bullet points**, not full sentences and paragraphs.

#### **Content details**

First page: Title and Author information (section/color/names)

#### Second page: Abstract

**Body**: 8-12 pages (not including Title and Abstract pages). Recommended section lengths (including both text and figures):

#### Background and Motivation: 2 slides

Contents of Background and Motivation: The majority of this section will be bulleted text. Include schematic figures when appropriate.

#### Results and Interpretation: 5-8 slides

Contents of a Results and Interpretation slide: Top half: figure(s) with caption(s). Bottom half: bullet points that present and interpret the data. (Remember that captions should not contain interpretation.)

Figure presentation: In published research figures are rarely a full page in size; rather each plot is usually only 3 inches x 3 inches.

Present you Results and Interpretation such that the figure, caption, and interpretation bullet points **all fit on a single slide**. Remember that when you shrink a figure, you must make sure it remains legible.

#### Implications and Future Work: 1-2 slides

Contents of Implications and Future Work: This section will be bulleted text.

## Background and motivation

suggested topics or figures

<u>Topic:</u> Introduce and discuss the importance of chemical probes for TDP-43 in biology and/or research:

What is TDP-43's role?

Why is it an interesting protein from a therapeutic perspective? Which functions of TDP-43 would you like to perturb?

<u>Topic:</u> Introduce and discuss the utility of small-molecule microarrays (SMMs) as a tool to find probes for TDP-43

Topic: Discuss your experimental goal

**Schematic**: Experimental approach – clear and simple summary of your strategy

### Results and Interpretation

suggested topics or figures

### **Protein purification**

<u>Schematic</u>: Experimental design <u>Topic</u>: TDP-43 purification <u>Figure</u>: Image of polyacrylamide gel <u>Figure</u>: Graph or table displaying cell protein concentration

### Small-Molecule Microarray Screen

<u>Schematic:</u> Experimental approach <u>Topic:</u> Identification of positive hits <u>Figure:</u> Graph or table comparing z-scores *Topic*: Chemical structure comparison (useful to include identifier) Figure: Images of positive hits (individual spots that correspond to hits)

slide #14399987

| Name        | Average SNR 635            | StDev SNR 635 | Robust Z             | CV       | Structure                                                    | Replicate 1            | Replicate 2 |  |
|-------------|----------------------------|---------------|----------------------|----------|--------------------------------------------------------------|------------------------|-------------|--|
| =C2)N)C3=Ci | 11.09194929                | 6.864722182   | 146.8931             | 0.618892 | CI-CJ-N-Z-CJ-NHC<br>VIII<br>0                                |                        |             |  |
| C(=O)OC)NC  |                            |               |                      |          |                                                              |                        |             |  |
| :@н](с)с[с  | 9.279052521                | 13.17224064   | 122.9213             | 1.419567 |                                                              |                        |             |  |
| N3CCC4(CC   | 6.022534408                | 1.746392727   | 79.86067             | 0.289976 | for gore                                                     |                        |             |  |
| C=C21)CCC   | 3.761380837<br>2.674391484 | 0.451015013   | 49.96163<br>35.58846 | 0.168642 | ₩ <sup>₩</sup> ₩~₩                                           |                        |             |  |
| 3[C@H]2CN   | 2.535966427                | 3.586650286   | 33.75808             | 1.414313 |                                                              |                        |             |  |
| (CC2)N[C@I  | 2 409495367                | 3 758417089   | 32 08577             | 1 352323 | Ng N<br>Ng N<br>Ng N<br>Ng N<br>Ng N<br>Ng N<br>Ng N<br>Ng N |                        |             |  |
| NN2)C(=0)N  | 2                          | 5.250417005   | 52.56577             | 2.552525 |                                                              | A COMPANY OF A COMPANY |             |  |

# $J|_{A R T}|_{C}|_{S}$

#### Small Molecule Microarrays Enable the Discovery of Compounds That Bind the Alzheimer's A $\beta$ Peptide and Reduce its Cytotoxicity

Jermont Chen,<sup>†,‡</sup> Anne H. Armstrong,<sup>†</sup> Angela N. Koehler,<sup>§</sup> and Michael H. Hecht<sup>\*,†</sup>

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States, and Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States

Received August 20, 2010; E-mail: hecht@princeton.edu

**Abstract:** The amyloid- $\beta$  (A $\beta$ ) aggregation pathway is a key target in efforts to discover therapeutics that prevent or delay the onset of Alzheimer's disease. Efforts at rational drug design, however, are hampered by uncertainties about the precise nature of the toxic aggregate. In contrast, high-throughput screening of compound libraries does not require a detailed understanding of the structure of the toxic species, and can provide an unbiased method for the discovery of small molecules that may lead to effective therapeutics. Here, we show that small molecule microarrays (SMMs) represent a particularly promising tool for identifying compounds that bind the A $\beta$  peptide. Microarray slides with thousands of compounds immobilized on their surface were screened for binding to fluorescently labeled A $\beta$ . Seventy-nine compounds were identified by the SMM screen, and then assayed for their ability to inhibit the A $\beta$ -induced killing of PC12 cells. Further experiments focused on exploring the mechanism of rescue for one of these compounds: Electron microscopy and Congo red binding to A $\beta$  aggregation past an early toxic oligomer. These findings demonstrate that the SMM screen for binding to A $\beta$  is effective at identifying compounds that reduce A $\beta$  toxicity, and can reveal potential therapeutic leads without the biases inherent in methods that focus on inhibitors of aggregation.



**Figure 2.** (a) The SMM binding screen. Compounds are covalently attached in an array of spots on the surface of a slide, and probed with fluorescently taged  $A\beta$  peptide. Those compounds that bind  $A\beta$  and withstand several washes are revealed as fluorescent spots. (b) Fluorescent read-out of the NPC-SMM slide following inclustion with fluorescent  $A\beta$ 40. Enlargement of a grid section shows compound 2002-H20 binding the peptide (false-colored red) as well as fluorescent dyes used in grid alignment (false-colored green and red) and nonfluorescing DMSO control spots. The structure of 2002-H20 is shown with isocyanate-reactive functional groups colored red to indicate the positions available for attachment to the slide. Because two functional groups (an amine and a phenol) are available for cross-linking, the population displayed on the surface is assumed to include molecules displayed in more than one orientation, with some exposing the amine and others exposing the phenol for interaction with  $A\beta$ . (c) Three replicate SMM screens of the NPC compound set show that compound 2002-H20 binds fluorescently labeled  $A\beta40$  reproducibly and consistently. (d) Histogram of the composite Z-scores of SMM fluorescence results from 3 replicates of the DIV and NPC slides. Results are divided into 254 bins with compound shown in blue and DMSO controls in red. The green box surrounds bins for 79 assay positive compounds with composite Z-scores > 3.4.

J Am Chem Soc. 2010 Dec 1;132(47):17015-22. doi: 10.1021/ja107552s.

### Implications and Future Work

Why is your work impactful and what would you do next?

<u>Topic</u>: What is the positive hit rate (%)? Is this consistent with similar research?

**Topic:** Do your hits share any common chemical structures?

If no, provide a putative explanation. If yes, how can you further test if this structure is important in binding?

*Topic*: How might you validate that your SMM positives are binders and measure quantitative affinity values for the protein-ligand interaction?

*Topic*: How can you use your TDP-43 binders to further research focused on this protein?

*Topic*: How might this method be improved?

*Topic*: How might this assay be used in the clinic? in industry?