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E2F

What are the biological 
consequences of the 
expression changes?

What causes these genes to 
change in expression?

Two types of questions we might ask 
about expression data:

1

What categories of genes
change in expression?

Does a common transcription 
factor regulate them?



Outline

• Evaluating the statistical significance of an annotation
– Hypergeometric distribution:

• The null hypothesis: 
– Aggregate score statistics
– Multiple hypotheses
– Healthy dose of skepticism

• Applications to analysis of gene expression:
– Consequences: Function of differentially expressed genes
– Causes: Identity of transcriptional regulators

• Known binding sites
• Predicted binding sites

2



Ge
ne

s

Recall our setting last time:
Interpreting transcriptional results

3

GO Terms

Let’s say 10% of the differentially expressed 
genes have annotation A.
Should we investigate this annotation?

• What if this annotation contains 10% of all 
genes in the genome?

• What if this annotation contains 25% of all 
genes in the genome?

What do the differentially expressed genes 
do?



Ge
ne

s

Recall our setting last time:
Interpreting transcriptional results

4

GO Terms

Do any annotations occur more often than 
expected by chance?

To answer this question, we need a null 
hypothesis.

The simplest null hypothesis is that the 
occurrence of an annotation is independent 
of the experiment … it could have occurred 
by chance.

What do the differentially expressed genes 
do?



Genome

Consider two annotations:
Nucleoplasm and paraspeckles

Very few genes are found in paraspeckles.  
• If a lot of our differentially expressed genes have this rare 

annotation, it is worth exploring.  
• Finding lots of nuclear genes is less interesting.

Genome

The significance depends on the size of the lists.

5

Paraspeckles
43 Nucleoplasm

4056

differentially
expressed

differentially
expressed



To determine statistical significance, 
we need to specify a null-model

Is this overlap significant?

6

Genome

Paraspeckles

differentially
expressed

Empirical 
approach:  
Find the 

distribution of 
observed “green 

genes” by random 
sampling



(1-CDF) of the hypergeometric distribution
gives the probability of observing n or more
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Outline

• Evaluating the statistical significance of an annotation
– Hypergeometric distribution:

• The null hypothesis: 
– Aggregate score statistics
– Multiple hypotheses
– Healthy dose of skepticism

• Applications to analysis of gene expression:
– Consequences: Function of differentially expressed genes
– Causes: Identity of transcriptional regulators

• Known binding sites
• Predicted binding sites
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Genome

Aggregate score statistics

Paraspeckles

Differentially expressed

Hypergeometric results 
depend on how we define 
“differentially expressed”

Mootha et al. (2003).  Nature Genetics 34, 267 – 273.  doi:10.1038/ng1180
9

Instead of starting with 
differential expressed genes:
• start with the gene categories
• ask if, in aggregate, their 

expression is unusual.

Permissive threshold

Restrictive threshold



Genome

Aggregate score statistics

GO category

GSEA uses a Kolmogorov-Smirnov statistic to 
compare the distributions of t-statistics
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Genome

Aggregate score statistics

GO category

Irizarry, et al. argue for X2 and z-test 
Gene set enrichment analysis made simple. (2009) Stat Methods Med Res
http://www.bepress.com/jhubiostat/paper185/

11

http://www.bepress.com/jhubiostat/paper185/


Aggregate score statistics

http://www.broadinstitute.org/gsea/

12

http://www.broadinstitute.org/gsea/


Outline

• Evaluating the statistical significance of an annotation
– Hypergeometric distribution:

• The null hypothesis: 
– Aggregate score statistics
– Multiple hypotheses
– Healthy dose of skepticism

• Applications to analysis of gene expression:
– Consequences: Function of differentially expressed genes
– Causes: Identity of transcriptional regulators

• Known binding sites
• Predicted binding sites

13



Testing Multiple Hypotheses
• Example:  
• Filter GO terms using a p<0.01
• Assume there are 30,000 GO terms
• How many GO terms will look significant by 

chance?

14



Testing Multiple Hypotheses
• Example:  Filter GO terms using a 

p<0.01
• By definition, the null-hypothesis has a 

1% probability of being correct for each 
test.

• There are roughly 30,000 terms in GO.
• At this level, we expect roughly 300 

false positives!

15



Multiple Hypotheses
• A simple solution:  require that the p-value be 

small enough to reduce the false positives to the 
desired level.

• This is called the Bonferroni correction.
• In our case, we would only accept terms with a 

𝑂𝑂 ≤
0.01

30,000
=
𝑑𝑑𝑂𝑂𝑑𝑑𝐷𝐷𝑂𝑂𝑂𝑂𝑑𝑑 𝑡𝑡𝑡𝑂𝑂𝑂𝑂𝑑𝑑𝑡𝑒𝑒𝑂𝑂𝑑𝑑
𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑂𝑂𝑂𝑂 𝑒𝑒𝐷𝐷 𝑡𝑡𝑂𝑂𝑑𝑑𝑡𝑡𝑑𝑑

• Since our tests are not all independent, this is 
very conservative, and will miss many true 
positives

• More sophisticated approaches exist, such as 
controlling the “false discovery rate”. 16



Outline

• Evaluating the statistical significance of an annotation
– Hypergeometric distribution:

• The null hypothesis: 
– Aggregate score statistics
– Multiple hypotheses
– Healthy dose of skepticism

• Applications to analysis of gene expression:
– Consequences: Function of differentially expressed genes
– Causes: Identity of transcriptional regulators

• Known binding sites
• Predicted binding sites
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Estrogen receptor

Not just the 
obvious categories

18
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Outline

• Evaluating the statistical significance of an annotation
– Hypergeometric distribution:

• The null hypothesis: 
– Aggregate score statistics
– Multiple hypotheses
– Healthy dose of skepticism

• Applications to analysis of gene expression:
– Consequences: Function of differentially expressed genes
– Causes: Identity of transcriptional regulators

• Known binding sites
• Predicted binding sites
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E2F

E2F

E2F

What are the biological 
consequences of the 
expression changes?

What causes these genes to 
change in expression?

Two types of questions we might ask 
about expression data:

21

What categories of genes
change in expression?

Does a common transcription 
factor regulate them?



genome

Sources of evidence for 
regulators

22

Genes
of interest

Experiments like ChIP-Seq
tell us about the binding of 
individual proteins in specific 
experimental conditions

Predictions based on 
sequence motifs tell us about 
potential binding in any
experimental conditions

We can apply the same 
statistical tests to both
sources of binding sites:



ChIP-Seq measures 
DNA binding in vivo

for one protein of interest

Sequence Align to 
reference 
genome

Crosslink 
protein to 
binding sites in 
living cells

Harvest cells 
and fragment 
DNA

Enrich for 
protein-bound 
DNA fragments 
with antibodies

Chromosomal Position



Large databases of ChIP-Seq exist

24
Table taken from: “GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments”
Ivan Yevshin Ruslan Sharipov Tagir Valeev Alexander Kel Fedor Kolpakov
Nucleic Acids Research, Volume 45, Issue D1, January 2017, Pages D61–D67, https://doi.org/10.1093/nar/gkw951



Outline
• Evaluating the statistical significance of an annotation

– Hypergeometric distribution:
• The null hypothesis: 

– Aggregate score statistics
– Multiple hypotheses
– Healthy dose of skepticism

• Applications to analysis of gene expression:
– Consequences: Function of differentially expressed genes
– Causes: Identity of transcriptional regulators

• Known binding sites
• Predicted binding sites
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Motifs are quantitative 
models for the DNA-
binding specificity of 
proteins.

If many of the sequences 
match a motif, we can 
hypothesize that the 
corresponding protein 
binds under some 
condition.

Sequence Motifs 
are Used to Predict Binding

26



Sequence Motifs 
Represent the Specificity of a Protein

27



Biophysics determines 
probability of binding

28

Some base pairs 
are more critical 

than others



TGACTCC
TGACTCA
TGACAAA
TGACTCA
TTACACA
TGACTAA
TGACTAA
TGACTCA
TGACTCA
TGACTCA

Position Frequency Matrix (PFM)
A:      0 |      0 |     10 |      0 |      2 |      3 |      9 |
C:      0 |      0 |      0 |     10 |      0 |      7 |      1 |
G:      0 |      9 |      0 |      0 |      0 |      0 |      0 |
T:     10 |      1 |      0 |      0 |      8 |      0 |      0 |
Position Probability Matrix (PPM)
A:  0.000 |  0.000 |  1.000 |  0.000 |  0.200 |  0.300 |  0.900 |
C:  0.000 |  0.000 |  0.000 |  1.000 |  0.000 |  0.700 |  0.100 |
G:  0.000 |  0.900 |  0.000 |  0.000 |  0.000 |  0.000 |  0.000 |
T:  1.000 |  0.100 |  0.000 |  0.000 |  0.800 |  0.000 |  0.000 |

If I had found 
these sites using 
ChIP-Seq, how 
would I describe 
the specificity?

29

Motifs can be derived from known binding sites:



TGACTCC
TGACTCA
TGACAAA
TGACTCA
TTACACA
TGACTAA
TGACTAA
TGACTCA
TGACTCA
TGACTCA

Position Frequency Matrix (PFM)
A:      0 |      0 |     10 |      0 |      2 |      3 |      9 |
C:      0 |      0 |      0 |     10 |      0 |      7 |      1 |
G:      0 |      9 |      0 |      0 |      0 |      0 |      0 |
T:     10 |      1 |      0 |      0 |      8 |      0 |      0 |
Position Probability Matrix (PPM)
A:  0.000 |  0.000 |  1.000 |  0.000 |  0.200 |  0.300 |  0.900 |
C:  0.000 |  0.000 |  0.000 |  1.000 |  0.000 |  0.700 |  0.100 |
G:  0.000 |  0.900 |  0.000 |  0.000 |  0.000 |  0.000 |  0.000 |
T:  1.000 |  0.100 |  0.000 |  0.000 |  0.800 |  0.000 |  0.000 |

If I had found 
these sites using 
ChIP-Seq, how 
would I describe 
the specificity?

30



TGACTCC
TGACTCA
TGACAAA
TGACTCA
TTACACA
TGACTAA
TGACTAA
TGACTCA
TGACTCA
TGACTCA

Position Frequency Matrix (PFM)
A:      0 |      0 |     10 |      0 |      2 |      3 |      9 |
C:      0 |      0 |      0 |     10 |      0 |      7 |      1 |
G:      0 |      9 |      0 |      0 |      0 |      0 |      0 |
T:     10 |      1 |      0 |      0 |      8 |      0 |      0 |
Position Probability Matrix (PPM)
A:  0.000 |  0.000 |  1.000 |  0.000 |  0.200 |  0.300 |  0.900 |
C:  0.000 |  0.000 |  0.000 |  1.000 |  0.000 |  0.700 |  0.100 |
G:  0.000 |  0.900 |  0.000 |  0.000 |  0.000 |  0.000 |  0.000 |
T:  1.000 |  0.100 |  0.000 |  0.000 |  0.800 |  0.000 |  0.000 |

If I had found 
these sites using 
ChIP-Seq, how 
would I describe 
the specificity?

31



How could I use the PPM to find 
binding sites?

ACGTAGATCGATCCCCTGATCAAAATCGTGTTGAGCGCGCGTAATATCGCTAGCTAGCAAATTCCGATA

Match?



The odds ratio is used to find the most 
likely binding sites

33

• The raw probabilities can be very small.
• Say the most preferred base at each of 10 

positions has p=0.8
• What is the probability of the best motif? 

• P(best match) = (0.8)^10= 0.1
Is P=0.1 good or bad?



The odds ratio is used to find the most 
likely binding sites

34

• The raw probability is very hard to interpret.
• A better question:  is it more likely that this 

sequence is a motif match or not?
• What is the prob of any sequence in a random 

genome? 
• P(random)=(0.25)^10= 9.5367e-7

• The ratio of these two probabilities is called an

odds ratio = ~10^5



The odds ratio is used to find the most 
likely binding sites

Odds ratio

35

The odds ratio quantitatively compares two 
hypotheses.

If the odds ratio is above an arbitrary threshold, we 
consider it a match

Usually each base is modeled as being independent 
of the others



• Steps:
1. Define a mathematical model for matching 

sequences

Is a region a valid binding site?

Position Probability Matrix (PPM)
A:  0.000 |  0.000 |  1.000 |  0.000 |  0.200 |  0.300 |  0.900 |
C:  0.000 |  0.000 |  0.000 |  1.000 |  0.000 |  0.700 |  0.100 |
G:  0.000 |  0.900 |  0.000 |  0.000 |  0.000 |  0.000 |  0.000 |
T:  1.000 |  0.100 |  0.000 |  0.000 |  0.800 |  0.000 |  0.000 |

1.Define motif model Define background 
model

Compare the 
models



• Steps:
1. Define a mathematical model for matching 

sequences

2. Define a model for sequences that don’t 
match:   Pbackground = 0.25

Is a region a valid binding site?

Position Probability Matrix (PPM)
A:  0.000 |  0.000 |  1.000 |  0.000 |  0.200 |  0.300 |  0.900 |
C:  0.000 |  0.000 |  0.000 |  1.000 |  0.000 |  0.700 |  0.100 |
G:  0.000 |  0.900 |  0.000 |  0.000 |  0.000 |  0.000 |  0.000 |
T:  1.000 |  0.100 |  0.000 |  0.000 |  0.800 |  0.000 |  0.000 |

1.Define motif model Define background 
model

Compare the 
models



Is the sequence more probably 
a motif or a random genomic region?

Odds ratio

• Steps:
3. Quantitatively compare the two hypotheses

1.Define motif model Define background 
model

Compare the 
models

38



𝑂𝑂𝑒𝑒𝑙𝑙 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚

= 𝑂𝑂𝑒𝑒𝑙𝑙 𝑃𝑃𝑁𝑁𝑜𝑜𝑚𝑚𝑜𝑜𝑜𝑜 − 𝑂𝑂𝑒𝑒𝑙𝑙 𝑃𝑃𝑁𝑁𝑜𝑜𝑐𝑐𝑏𝑏𝑔𝑔𝑜𝑜𝑜𝑜𝑁𝑁𝑛𝑛𝑚𝑚

1.Define motif model Define background 
model

Compare the 
models

Motifs are usually represented 
as the log-odds

39

• The log-odds matrix is often called a: 
PWM position weight matrix or 
PSSM position-specific scoring matrix

• Taking the log helps avoid problems that computers have with very small 
numbers

• Rule-of-thumb:  60% of the maximum-possible LLR score is a 
reasonable threshold for determining a match to a PWM motif



E2F

E2F

E2F

What are the biological 
consequences of the 
expression changes?

What causes these genes to 
change in expression?

You now have tools to address both types 
of questions:

40

What categories of genes
change in expression?

Does a common transcription 
factor regulate them?



Motif Discovery• Given:  a set of sequences
• Find: the PWM for an over-represented motif

41

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTGT

ACGTAAATGCAATTACGATGATAAATGCAGCAACCGTTATCGACTTG

ATCTTACTAGCATGGCCATCATCAACATGCAAAGCAGGTTGTGCCCT

ATAAATGCCCAATTGATTTGTCTCCACTACATAATGCAAATACGATG



Motif Discovery• Given:  a set of sequences
• Find: the PWM for an over-represented motif

42

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTGT

ACGTAAATGCAATTACGATGATAAATGCAGCAACCGTTATCGACTTG

ATCTTACTAGCATGGCCATCATCAACATGCAAAGCAGGTTGTGCCCT

ATAAATGCCCAATTGATTTGTCTCCACTACATAATGCAAATACGATG



Motif Discovery• Note 1:  
– If you know the PWM, you can easily align the 

sequences
• Note 2:  

– If the sequences are aligned, you can easily 
find the PWM

43

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTGT

ACGTAAATGCAATTACGATGATAAATGCAGCAACCGTTA

AGCATGGCCATCATCAACATGCAAAGCAGGTTGTGCCCT

ATTTGTCTCCACTACATAATGCAAATACGATG



The Expectation Maximization (EM) 
Algorithm

• When we begin
– we don’t know the PWM
– we don’t know the location of the binding sites

• We iteratively:
– assume we know the motif and look for the most 

likely binding site
– assume we know the binding site and compute 

the best motif

44



Expectation Maximization
• E step – calculate expected motif locations given the 

current motif

Given our current best guess about the motif,
Where do we think the protein is binding?

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTGT

ACGTTCATGTATTTACGATGATAAATGCAGCAACCGTTATCGACTTG

ATCTTACTAGCATGGCCATCATCAACATGATAAGCAGGTTGTGCCCT

ATAAATGCCCAATTGATTTGTCTCCACTACAAAATGCAATTACGATG

45



Expectation Maximization

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTG

GACATTTTGTACGTTCATGTATTTACGATGATAAATGCAGCAACCG

CATGGCCATCATCAACATGATAAGCAGGTTGTGCCCGGTTTACTGA

TTGTCTCCACTACAAAATGCAATTACGATGAGAGGGTGATGGCACT

• M step – re-estimate the motif to maximize likelihood

Given our expectation about where binding occurs,
What is the most likely motif model?

46



Expectation Maximization

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTG

GACATTTTGTACGTTCATGTATTTACGATGATAAATGCAGCAACCG

CATGGCCATCATCAACATGATAAGCAGGTTGTGCCCGGTTTACTGA

TTGTCTCCACTACAAAATGCAATTACGATGAGAGGGTGATGGCACT

Old motif

New motif

• M step – re-estimate the motif to maximize likelihood

47



Properties of the EM algorithm

• EM is guaranteed to converge
– at each step our overall score improves

• EM is not guaranteed to give the right answer
– had we started with a different initial guess, we 

might have found a better answer

48



What do we maximize?

• We maximize the likelihood of the full 
sequences given our current motif model.

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTGT

Compute 
likelihood using 

motif model 
Pmodel

Compute 
likelihood using 

background 
model 

Pbackground

Compute 
likelihood using 

background 
model

Pbackground

𝑂𝑂𝑒𝑒𝑙𝑙 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚

= 𝑂𝑂𝑒𝑒𝑙𝑙 𝑃𝑃𝑁𝑁𝑜𝑜𝑚𝑚𝑜𝑜𝑜𝑜 − 𝑂𝑂𝑒𝑒𝑙𝑙 𝑃𝑃𝑁𝑁𝑜𝑜𝑐𝑐𝑏𝑏𝑔𝑔𝑜𝑜𝑜𝑜𝑁𝑁𝑛𝑛𝑚𝑚

• Remember that each element of the motif is
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