Two types of questions we might ask
about expression data:
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e Evaluating the statistical significance of an annotation

— Hypergeometric distribution:
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— Causes: Identity of transcriptional regulators
* Known binding sites
e Predicted binding sites



Genes

Recall our setting last time:
Interpreting transcriptional results

= m What do the differentially expressed genes
do?

Let’s say 10% of the differentially expressed
genes have annotation A.
Should we investigate this annotation?

e What if this annotation contains 10% of all
genes in the genome?

e What if this annotation contains 25% of all
genes in the genome?



Recall our setting last time:
Interpreting transcriptional results

- m What do the differentially expressed genes
do?

Do any annotations occur more often than
expected by chance?

ok kR

Q
é ==, To answer this question, we need a null
o hypothesis.
L The simplest null hypothesis is that the
; e I’ occurrence of an annotation is independent
Bl : of the experiment ... it could have occurred
% » E by chance.
L



Consider two annotations:
Nucleoplasm and paraspeckles

The significance depends on the size of the lists.

Genome

differentis
expressed

expressed

Very few genes are found in paraspeckles.

e If alot of our differentially expressed genes have this rare
annotation, it is worth exploring.

* Finding lots of nuclear genes is less interesting.




To determine statistical significance,
we need to specify a null-model

Empirical
approach:
Find the
distribution of
observed “green
genes” by random
sampling

Genome

Paraspeckles

Is this overlap significant?




(1-CDF) of the hypergeometric distribution
gives the probability of observing n or more

N=Number of
genes in category (

N\ (Genome — N
n) (DiffExp — n)
(oif )

1 — CDF(Overlap) =

|

n=overlap

1-CDF says that the
term is enriched

Probability
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Number in overlap (n)
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Aggregate score statistics

Hypergeometric results Instead of starting with
depend on how we define differential expressed genes:

“di ' 7 10,000 : .
differentially expressed  start with the gene categories
Genome * askif, in aggregate, their <

expression is unusual. )4.{
a raspeckles

1,000. 2 ol

100 |

DM2 mean expression

10 . . .
10 100 1,000 10,000

NGT mean expression

Differentially expressed

Permissive threshold

Mootha et al. (2003). Nature Genetics 34, 267 —273. doi:10.1038/ng1180



Aggregate score statistics

Genome

<>GO category

& *
- T
— . = - oy
|1 I Ll |||||||IIJILIIIILIFI-III.IIIIIIIII.IILLF.IIII|||||

-4 -2 0 2 4
Signal to noise value

GSEA uses a Kolmogorov-Smirnov statistic to
compare the distributions of t-statistics



Aggregate score statistics

Genome

<>GO category
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Irizarry, et al. argue for X? and z-test

Gene set enrichment analysis made simple. (2009) Stat Methods Med Res
http://www.bepress.com/jhubiostat/paper185/



http://www.bepress.com/jhubiostat/paper185/

Aggregate score statistics

http://www.broadinstitute.org/gsea/

Downloads Molecular Signatures Database

Overview

Gene Set Enrichment Analysis (GSEA) is a computational methed that
determines whether an a priori defined set of genes shows statistically
significant, concordant differences between two biological states

(e.q. phenotypes).

What's New
02/19/10: We have a new release of GSEA 2.0.6 that fixes the FTP problems
that have been experienced recently. Please discontinue use of older

wersions and use the new versien instead.

12/10/09: Leading Edge Analysis now works correctly in Release GSEA
2.0.5. There are ne changes to the algorithm or functienality.

12/07/2009: Release GSEA 2.0.5 of the GSEA java application is now
available. The new release has been updated te work on Snow Leopard.
There are no changes to the algorithm or functionality. This update requires
Java 6 (on all platforms).

Getting Started
A guick tutorial to get you up and running.

Tools and Information

Downloads: Implementations of GSEA plus additional resources to analyze,
annotate and interpret enrichment results.

Molecular Signatures Database: A collection of gene sets for use with
GSEA software and tools for exploring them.

Documentation: Information on the GSEA software, the GSEA algorithm.

Registration

Please register to download the GSEA software and view the MSigDB gene
sets. After registering, you can log in at any time using your email address.
Registration is free. Its only purpose is to help us track usage for reports to
our funding agencies.

d Home | Cancer Genomics | B

Molecular Profile Data

Gene Set Database

Contributors

GSEA is maintained by the GSEA team. Our thanks to our many
contributors. Funded by: National Cancer Institute, National Institutes of
Health, Mational Institute of General Medical Sciences.
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Citing GSEA

To cite your use of the GSEA software, please reference Subramanian,
Tamayo, et al. (2005, PNAS 102, 15545-15550) and Mootha, Lindgren, et al.
(2003, Nat Genet 34, 267-273).
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Testing Multiple Hypotheses

Example:
Filter GO terms using a p<0.01
Assume there are 30,000 GO terms

How many GO terms will look significant by
chance?



Testing Multiple Hypotheses

Example: Filter GO terms using a
p<0.01

By definition, the null-hypothesis has a
1% probability of being correct for each
test.

There are roughly 30,000 terms in GO. - _~ |

At this level, we expect roughly 300
false positives! A




Multiple Hypotheses

A simple solution: require that the p-value be
small enough to reduce the false positives to the
desired level.

This is called the Bonferroni correction.
In our case, we would only accept terms with a

0.01 desired threshold

p < =
30,000 number of tests

Since our tests are not all independent, this is
very conservative, and will miss many true
positives

More sophisticated approaches exist, such as
controlling the “false discovery rate”.
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Search

the Gene Ontof{jgy Estrogen receptor gene or protein name | ¥

Downloads Tools Documentation Projects About Contact
| Selact all | | Clear al | | Ferform an action with this page's selected terms... vl Go!
Accession, Term Ontology Qualifier Evidence
[l &0 0030520 @ estrogen receptor signaling pathway 41 gene products biological MNAS

view in free process

[ 60:0043526 | neuroprotection | Not just the 67.9ene products biological IEA

yiew in tree process with Ensembl:ENSRMCOPO0O000026350

obvious categories

[ 30:0048386 ¢ positive regulation of retinoic acid receptor signaling pathway 9 gene products biological IDA

yiew in tree process
[] 300045885 : positive regulation of survival gene product expression 56 gene products  biological IEA

view in tree process with EnsemblENSRMCPOO000O026350
[ 300008355 @ regulation of transcription, DNA-dependent 16904 gene products b NAS

vigw in tree
[] G0:0043627 @ response to estrogen stimulus 354 gene products  biological IEA

view in tres p 5 with Ensembl:ENSRMCPOOODO026350
O] 0007165 @ signal transduction 18490 gene products  biological

view in tree

18



GO Evidence Code Decision Tree

Experimental
(wet lab)

Is annotation based on genetic
mutations or allelic variation?

Y

no + yes

Iz a single gene being
mutated or compared to other
alleles of the same gene?

+ ao yes

Is mare than one gene
being mutated in
the same strain?

yes

direct 1 to 1 physical interaction

Is annotation based an a

with another gene product?

Yo Sy

ar

Is annotation based on a direct
assay for the functicn, process,
component of the gene product?

Yo Sy

Is annotation based on
the expression pattern
of the gene product?

yes

o

What type of evidence is the annotation based on? J

Computational method

Author statement

o Mo evidence is available
from publication

Will each annotation be individually
reviewed and confirmed by a
human annotator?

o
yes

Is the computation based purely on
the sequence of the gene product
[or sequence-based mapping files)?

M e
o

Does the computation include
consideration of the genomic
context of the gene?

N e
o

s the computation an integrated
analysis, typically including
experimental data sets, and often
including multiple data types?

— .

Is there a GO annotation in another
aspect that allows you to make an
inference based on that GO term for
an aspect without evidance?

NEY
no

Have you been able to find any
evidence to support a GO
annotation in a given GO aspect?
[see note on use of MDY

@

Is annotation based on an
author statement that
cites a published reference
as the source of information?

M ves
nc

Is annotation based on an
author statement that does not
cite a published reference
as the source of infarmation?

= .

O Curatar reviewsd annotatians

O Annoctations NOT reviewed by a curator

MNote on use of ND evidence code:

Unlike the other evidence codes, the MD code does not indicate a method from a specific
refarence. Rather, it indicates that the annotator looked at the available information and
determined that nothing is known about the gene product for a given aspect of GO
{maolecular function, biological process or cellular component). The annotator will always
look at all available literature for the gene. Depending on the resources and the annotation
philescphy of the annotating group, the annotator may alse look at sequence comparison
data to determing if any predictions may be made based on the sequence,
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Two types of questions we might ask

about expression data:

ot
0‘\\00 What are the biological
conseguences of the
expression changes?

What categories of genes
change in expression?

What causes these genes to
change in expression?

Does a common transcription
factor regulate them?

&
i




Sources of evidence for
regulators

We can apply the same | Experiments like ChIP-Seq
statistical tests to both | "‘\( tell us about the binding of
sources of binding sites; individual proteins in specific

N\ . .
@ experimental conditions

Predictions based on
sequence motifs tell us about
potential binding in any
experimental conditions

22



ChlP-Seq measures
DNA binding in vivo

for one protein of interest

Chromosomal Position

2 3 4
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Crosslink Harvest cells Enrich for Sequence Align to
protein to and fragment protein-bound reference
binding sites in  DNA DNA fragments genome

living cells with antibodies



Large databases of ChIP-Seq exist

Table 1.

Comparison of databases that are based on ChIP-seq data

Database, URL

ChiPBase (http://rna.sysu.edu.cn
/chipbase)

Cistrome DB
(http://dc2.cistrome.org/#/)

ENCODE
(https://www.encodeproject.org)

Factorbook

(http://www.factorbook.org)

GTRD (http://gtrd.biouml.org)

ChiP-Atlas (http://chip-atlas.org)

GeneProf (http://www.geneprof.org)

NGS-QC (http://www.ngs-gc.org)

Source of human
and mouse data

GEO, ENCODE

GEQ, SRA, ENA,

ENCODE

ENCODE

ENCODE

GEQ, SRA, ENCODE

SRA

SRA, ENCODE,

literature

GEO

Number of samples (TF-
related)*

total 3549 human 2498 mouse
1036 rat 15

total 10 276 (TF+non-TF)
human 5774 mouse 4502 rat 0

total 1448 human 1254 mouse
194 rat 0

total 1007 human 837 mouse
170 rat0

total 5078 human 2955 mouse
2107 rat 16

total 10 774 human 5914
mouse 4860 rat 0

total 1692 human 693 mouse
999 rat0

total 6672 human 4234 mouse
243Brat0

NMumber of TFs

252 TFs and non-TFs for 10 species

260 TFs and non-TFs

295 TFs and non-TFs for human, 52 TFs and
non-TFs for mouse

167 TFs, co-factors and chromatin remodeling
factors for human, 51—for mouse

476 human and 257 mouse sequence specific

TFs, corresponding to 542 TFClass classes.

699 human and 502 mouse TFs and others.

133 human and 131 mouse TFs

unknown

Table taken from: “GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments”
Ivan Yevshin Ruslan Sharipov Tagir Valeev Alexander Kel Fedor Kolpakov
Nucleic Acids Research, Volume 45, Issue D1, January 2017, Pages D61-D67, https://doi.org/10.1093/nar/gkw951
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Sequence Motifs
are Used to Predict Binding

oe\

Ys : L

% Q Motifs are quantitative
% | models for the DNA-

binding specificity of

| Q | proteins.

( P If many of the sequences
[ |  match a motif, we can

hypothesize that the
° corresponding protein
|_, binds under some

(I

condition.

2 C 26




Sequence Motifs
Represent the Specificity of a Protein




Biophysics determines
probability of binding

Some base pairs
are more critical
than others

28



Motifs can be derived from known binding sites:

TGACTCC

If | had found TGACTCA
: : TGACAAA

these sites using TGACTCA
_ TTACACA
ChlP-Seq, ho_vv TCAGTAA
would | describe TGACTAA
A~ D TGACTCA

the specificity” TOACTOA

TGACTCA

29



If | had found
these sites using

ChlP-Seq, how
would | describe
the specificity?

Position Frequency Matrix (PFM)

4O O >

1

0|

0|
0|
0]

O |

O |
9 |
11

10 |

0|
0 |
0]

TGACTCC
TGACTCA
TGACAAA
TGACTCA
TTACACA
TGACTAA
TGACTAA
TGACTCA
TGACTCA
TGACTCA

oNoNelNe)

0O ON

OCOoO~NW

©COoOr oo
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If | had found
these sites using
ChiIP-5Seq, how
would | describe
the specificity?

Position Frequency Matrix (PFM)
A: 01 01 10 |
C: 0 | 0 |

G: 0 | 9 |

T: 10 | 1 |

Position Probability Matrix (PPM)

Az 0.000 | 0.000 | 1.000 |
C: 0.000 | 0.000 | 0.000 |
G: 0.000 | 0.900 | 0.000 |
T- 1.000 | 0.100 | 0.000 |

0|
0 |
0]

TGACTCC
TGACTCA
TGACAAA
TGACTCA
TTACACA
TGACTAA
TGACTAA
TGACTCA
TGACTCA
TGACTCA

o)
10
o)
o)

0.000
1.000
0.000
0.000

0O ON

0.200
0.000
0.000
0.800

OCOoO~NW

0.300
0.700
0.000
0.000

©COoOr oo

0.900
0.100
0.000
0.000
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Position Probability Matrix (PPM)
A:

C:
G:
T

How could | use the PPM to find
binding sites?

o
>

4CGTAGATCGATCCC
Match?
0.000 | O.
0.000 | O.
0.000 | O.
1.000 | O.

000
000

1.

| 0.
| 0.
| 0.

000
000
000
000

o O P O

.000
.000
.000
.000

O O O O

.200
.000
.000
.800

O O O O

.300
. 700
.000
.000

O O O O

CTGATCAAAATCGTGTTGAGCGCGCGTAATATCGCTAGCTAGCAAATTCCGATA

.900
.100
.000
.000



The odds ratio 1s used to find the most
likely binding sites

 The raw probabilities can be very small.

o Say the most preferred base at each of 10
positions has p=0.8

 What is the probability of the best motif?
e P(best match) = (0.8)*10=0.1
Is P=0.1 good or bad?

33



The odds ratio 1s used to find the most
likely binding sites

The raw probability i1s very hard to interpret.
A better question: Is it more likely that this
seguence Is a motif match or not?
What is the prob of any sequence in a random
genome?

e P(random)=(0.25)"10= 9.5367e-7
The ratio of these two probabilities is called an

odds ratio = __ Model_prob  _10n5
Background prob

34



The odds ratio 1s used to find the most
likely binding sites

g Odds ratio A

Model_prob 1 pese® oty
_ BaCkgT Ound_ Dr Ob i=1 P background (b) =1 ,

J

The odds ratio quantitatively compares two
hypotheses.

If the odds ratio is above an arbitrary threshold, we
consider it a match

Usually each base is modeled as being independent
of the others

35



Is a region a valid binding site?

e Steps:
1. Define a mathematical model for matching
SeQUENCES  Model _prob=] [ puu(s)

=1
Position Probability Matrix (PPM) ’

A: 0.000 | 0.000 | 1.000 | 0.000 | 0.200 | 0.300 | 0.900 |
C: 0.000 ] 0.000 | 0.000 | 1.000 | 0.000 | 0.700 | 0.100 |
G: 0.000 ] 0.900 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
T- 1.000 | 0.100 | 0.000 | 0.000 | 0.800 | 0.000 | 0.000 |

1.Define motif model



Is a region a valid binding site?
e Steps:
1. Define a mathematical model for matching

Seguences w
| Model prob= H Pooia(D>i)

i=1

Position Probability Matrix (PPM)

A:

C:
G:
T:

0.000 | 0.000 | 1.000 | 0.000 | 0.200 | 0.300 | 0.900 |
0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.700 | 0.100 |
0.000 | 0.900 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
1.000 | 0.100 | 0.000 | 0.000 | 0.800 | 0.000 | 0.000 |

2. Define a model for sequences that don’t
match:  Ppackground = 0-25

Define backgrouna
model



Is the sequence more probably
a motif or a random genomic region?
e Steps:.
3. Quantitatively compare the two hypotheses

Model _prob=| | pposa(®.9)

i=l

Background prob = H Doackground (b)

i=1

g Odds ratio A
Model _prob ﬁ Proda(D,0) _ f[ odds(b, i)
\Background _prob DPrackground b)) o Y,

Compare the
models



Motifs are usually represented
as the log-odds

log [ Fmodel ] = log [Pmodel] _ log [Pbackground]

P background

The log-odds matrix is often called a:

PWM position weight matrix or

PSSM position-specific scoring matrix
Taking the log helps avoid problems that computers have with very small
numbers
Rule-of-thumb: 60% of the maximum-possible LLR score is a
reasonable threshold for determining a match to a PWM motif

Compare the
models



You now have tools to address both types
of questions:

a .
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 Glven: ase ngfeq S Very

 Find: the PWM for an over-represented motif

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTGT
ACGTAAATGCAATTACGATGATAAATGCAGCAACCGTTATCGACTTG
ATCTTACTAGCATGGCCATCATCAACATGCAAAGCAGGTTGTGCCCT

ATAAATGCCCAATTGATTTGTCTCCACTACATAATGCAAATACGATG



 Glven: ase ngfeq S Very

 Find: the PWM for an over-represented

motif

ACGTGTCTGCTAC4AAATGCAAATACGATGATAAATGCAGCAATTGT

ACG#AAATGCAATFACGATGATAAATGCAGCAACCGTTATCGACTTG
ATCTTACTAGCATGGCCATCATC4ACATGCAAAFCAGGTTGTGCCCT

ATAAATGCCCAAIIGAIIIGTCTCCACTAC4TAATGCAAA

TACGATG




. Note 1- Motif Discovery

— If you know the PWM, you can easily align the
sequences

e Note 2:

— If the sequences are alighed, you can easily
find the PWM

ACGTGTCTG CTAC/}AAATG CAAATACGATGATAAATGCAGCAATTGT

ACG#AAATGCAATFACGATGATAAATGCAGCAACCGTTA

\GCATGGCCATCATC4ACATGCAAAFCAGGTTGTGCCCT

\TTTGTCTCCACTAC4TAATGCAAAFACGATG .




The Expectation Maximization (EM)
Algorithm

e When we begin
— we don’t know the PWM
— we don’t know the location of the binding sites

e We iteratively:

— assume we know the motif and look for the most
likely binding site

— assume we know the binding site and compute
the best motif



Expectation Maximization

e E step — calculate expected motif locations given the

current motif

Given our current best guess about the motif,

A_&IIIIQQIT Where do we think the protein is binding?

4

ACGTGTCTG CTAC/}AAATG CAAATTACGATGATAAATGCAGCAATTGT

ACG#TCATGTATTFACGATGATAAATGCAGCAACCGTTATCGACTTG

ATCTTACTAGCATGGCCATCATC4ACATGATAAFCAGGTTGTGCCCT

TACGATG

ATAAATG CCCAATTGATTTGTCTCCACTAC/i\AAATG CAAT]

45



Expectation Maximization

M step — re-estimate the motif to maximize likelihood

AT Given our expectation about where binding occurs,
AARM | Vc A What is the most likely motif model?
v.

ACGTGTCTGCTAC4AAATGCAAATACGATGATAAATGCAGCAATTG

GACATTTTGTACGT'TCATGTATTTACGATGATAAATG CAGCAACCG

CATGGCCATCATCAACATGATAAGCAGGTTGTGCCCGGTTTACTGA

TTGTCTCCACTACAIAAATGCAAT"ACGATGAGAGGGTGATGGCACT

46



Expectation Maximization

M step — re-estimate the motif to maximize likelihood

Ao rTecal]  Old motif

New motif
AA c A
=snl¥e-%

ACGTGTCTGCTAC4AAATGCAAATACGATGATAAATGCAGCAATTG

GACATTTTGTACGT'TCATGTATTTACGATGATAAATG CAGCAACCG

CATGGCCATCATCAACATGATAAGCAGGTTGTGCCCGGTTTACTGA

TTGTCTCCACTACAIAAATGCAAT"ACGATGAGAGGGTGATGGCACT

47



Properties of the EM algorithm

e EM is guaranteed to converge

— at each step our overall score improves

e EM is not guaranteed to give the right answer

— had we started with a different initial guess, we
might have found a better answer



What do we maximize?

 We maximize the likelihood of the full
sequences given our current motif model.

Compute Compute
likelihood using Compute likelihood using
background likelihood using background
model motif model model
I:)background I:)model F)background
J J J
I | | |

ACGTGTCTGCTACAAAATGCAAATACGATGATAAATGCAGCAATTGT

e Remember that each element of the motif is
lOg [ Pmodel ] — lOg [Pmodel] o lOg [Pbackground]

Pbackground
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